Counting l-adic local systems over a curve over a finite field

发布时间:2023年10月30日 作者:李江涛   阅读次数:[]

报告题目:Counting l-adic local systems over a curve over a finite field

摘要:In 1981, Drinfeld enumerated the number of irreducible l-adic local systems of rank two on a projective smooth curve fixed by the Frobenius endomorphism. Interestingly, this number looks like the number of points on a variety over a finite field. Deligne proposed conjectures to extend and comprehend Drinfeld's result. By the Langlands correspondence, it is equivalent to count certain cuspidal automorphic representations over a function field. I will present the mystery behind Deligne’s conjecture and some counting results where we connect counting to the number of stable Higgs bundles using Arthur's non-invariant trace formula.

报告人简介:余红杰,本科武汉大学,硕士巴黎综合理工学院,博士巴黎第七大学,曾经博士后工作于奥地利科学技术研究院,现在为以色列魏茨曼科学研究院博士后。相关研究成果发表于C. R. Math. Acad. Sci. Paris,Ann. of Math.以及Pac. J. Math.等杂志。


会议时间:2023/11/08 19:00-20:00 (GMT+08:00)中国标准时间-北京




打印】【收藏】 【关闭